Prof. Dr.-Ing.

Joachim Burghartz

Director of the institute
Institute of Nano and Microelectronic Systems (INES)


+49 711 21855 200


Pfaffenwaldring 47
70569 Stuttgart

Joachim N. Burghartz was born in Aachen in 1956. He studied electrical engineering at RWTH Aachen and graduated (Dipl.-Ing.) in 1982. In 1987 he received his Ph. D. (Dr.-Ing.) from Universität Stuttgart.

Between 1982 and 1987 he was a member of the research team on sensors with integrated signal conversion, particularly magnetic field sensors, at Universität Stuttgart.

From 1987 until 1998 he worked at the IBM Thomas J. Watson lab in Yorktown Heights, NY, on selective silicon epitaxial, Si and SiGe high-speed transistor designs and integration processing as well as in CMOS technology. Following this, he expanded his research into the development of passive components, especially integrated high-performance silicon coils.

From 1998 until 2005, he was Full Professor at TU Delft and headed the High-Frequency Technology and Components (HiTeC) research team. He concentrated his research on Silicon HF technology with a focus spanning from work on materials to design on circuit components.

In addition, from March 2001 until August 2005, he served as Scientific Director at TU Delft´s Institute of Microelectronics and Submicron Technology (DIMES) .

Since October 2005, Prof. Dr. Burghartz has been Director and Chairman of the Board at Instituts für Mikroelektronik Stuttgart (IMS CHIPS) as well as being Full Professor at Universität Stuttgart.

He has also been heading the Institute for Nano and Microelectronic Systems (INES) at Universität Stuttgart since March 1st, 2006.

August 18th, 2013, marked his launch as Manager of the IMS Mikro-Nano Produkte GmbH.

In recognition of his academic achievements he has been awarded prizes, such as the IEEE Electron Devices Society´s J. J. Ebers Award 2014, the Landesforschungspreis Baden-Württemberg 2009 and the ISSCC Jack Raper Award 2008. He is an IEEE Fellow and was Vice President of the IEEE Electron Devices Society between 2009 and 2013 as well as having been Associate Editor of the IEEE Transactions on Electron Devices between 2001 and 2006.
He was a Member of the Executive and Technical Committees at the BCTM (General Chairman 2000), IEDM, ESSDERC, ISICDG, VLSI-TSA, DCIS and SBMICRO symposia. His list of publications include 91 papers (peer review) in journals, 244 publications for symposia, 3 books, 4 book chapters and 16 patents (patent families). A particular highlight is the technical book he edited commemorating the 60/35th anniversary of the IEEE Electron Devices Society „Guide to State-of-the-Art Electron Devices“ (Wiley&Sons Publishers) which was awarded the 2013 PROSE Award as best technical book of the year in engineering & technology.

Dr. Golzar Alavi (U Stuttgart 2019)
Robert Bosch GmbH, Schwieberdingen, Germany

Dr. Yigit Mahsereci, (U Stuttgart 2018) 
IMS CHIPS, Stuttgart, Germany

Dr. Saleh Ferwana (U Stuttgart 2017)
IMS CHIPS, Stuttgart, Germany

Dr. Moustafa Nawito (U Stuttgart 2017)
PolyMath Analog, Stuttgart, Germany

Dr. Michael Jurisch (U Stuttgart 2017)
IMS CHIPS, Stuttgart, Germany

Dr. Mahadi-Ul Hassan (U Stuttgart 2017)
TDK Seicos, München, Germany

Dr. Shen-Huei Sun (U Stuttgart 2015)
IMS CHIPS, Stuttgart, Germany

Dr. Fabian Utermöhlen (U Stuttgart 2015)
Robert Bosch GmbH, Stuttgart, Germany

Dr. Tarek Hussein (U Stuttgart 2015)
Robert Bosch GmbH, Reutlingen, Germany

Dr. Tarek Zaki (U Stuttgart 2014)
Robert Bosch GmbH, Reutlingen, Germany

Dr. Daniel Etter (U Stuttgart 2014)
Infineon Technologies AG, München, Germany

Dr. Yipin Zhang (U Stuttgart 2013)
Intel, München, Germany

Dr. Nicoleta Wacker (U Stuttgart 2013)

Dr. Jun Tian (TU Delft 2013)
Mapper Lithography, Netherlands

Dr. Stefan Endler (U Stuttgart 2012)
Robert Bosch GmbH, Reutlingen, Germany

Dr. Evangelos Angelopoulos (U Stuttgart 2011)
Infineon Technologies AG, München, Germany

Dr. Ali Asif (U Stuttgart 2011)
GC University, Department of Physics, Lahore, Pakistan

Prof. Koen Buismann (TU Delft 2011)
Chalmers University, Sweden

Dr. Yue Ma (TU Delft 2011)
Mapper Lithography, Netherlands

Prof. Huseyin Sagkol (TU Delft 2011)
Fatih University, Turkey

Dr. Saoer Sinaga (TU Delft 2010)
Philips, Netherlands

Dr. Martin Zimmermann (U Stuttgart 2010)
IMS CHIPS, Stuttgart, Germany

Dr. Cong Huang (TU Delft 2010)
TU Delft, Netherlands

Dr. Edmund Neo (TU Delft 2010)
NXP, Netherlands

Dr. Theodoros Zoumpoulidis (TU Delft 2010)
TU Delft, Netherlands

Dr. Pedram Khalili Amiri (TU Delft 2008)
University of California at Los Angeles (UCLA), USA

Dr. Marina Vroubel
NXP, Netherlands

Prof. Yan Zhuang
Wright State University, Dayton, Ohio, USA

Dr. Hsien-Chen Wu (TU Delft 2007)
Texas-Instruments, Dallas, USA

Dr. Alexander Polyakov (TU Delft 2006)
Alpha Media Group

Dr. Vittorio Cuoco (TU Delft 2006)
NXP, Netherlands

Dr. Marco Spirito (TU Delft 2006)
TU Delft, Netherlands

Dr. Mark van der Heijden (TU Delft 2005)
NXP Research, Netherlands

Dr. Ronald Dekker (TU Delft 2004)
Philips Research, Netherlands

Dr. Pham Phuong Nga (TU Delft 2003)
Imec, Belgium

  • IEEE Electron Devices Society´s J. J. Ebers Award 2014

  • PROSE Award 2013 (informations about "Guide to State-of-the-Art Electron Devices")

  • Research Award of the State of Baden-Wuerttemberg, Germany (2009)
    (Landesforschungspreis für Angewandte Forschung)

  • IEEE ISSCC Jack Raper Award for Outstanding Technology Directions Paper (2008)

  • ESSDERC Best Paper Award (1992)

  • IBM Technical Achievement Awards (1990 and 1994)

  • IBM Technical Disclosure Achievement Awards (4 awards in total)
  • IEEE Cledo Brunetti Awards Committee (2005 - 2008)

  • IEEE Fellow (since 2001)

  • IEEE Electron Devices Society (EDS)
    • Executive Committee (since 2009)
    • Vice President Technical Activities (since 2009)
    • Distinguished Lecturer
    • Board of Governors (BoG; formerly AdCom; since 2005)
    • Associate Editor IEEE Transactions on Electron Devices (2001-2006)
    • Technical Activities Committee (2006-2009)
    • Region/Chapters Committee (since 2006)
    • Meetings Committee (since 2009)
    • Newsletter Committee (since 2013)
    • Publications Committee (since 2009)
    • EDS Germany Chapter Chair (ad interim; since 2009)

  • IEEE Technical conference committee member (list incomplete)
    • BCTM (1996-2001)
    • ESSDERC (since 1998)
    • IEDM (1993-95 and 1998-99)
    • ISCDG (since 2001)
    • SiRF (2003-2007)
    • TSA-VLSI (since 2011)
    • DCIS (2006, 2009)
    • MST Congress (since 2001)
    • SBMicro (2014)

  • microTEC Südwest (MST Excellence Cluster, Germany)
    • Member Cluster Board
    • Coordinator MST production platform PRONTO
  • 1st Self-aligned SiGe bipolar transistor (1989)
  • 1st  AC characteristicsof SiGe bipolar transistor (1990)
  • 1st  SiGe bipolar circuit demonstration (1990)


Back row: Joachim Burghartz, Jim Comfort, Eduard de Frésart, Emmanuel Crabbé
Middle row: Gary Patton, Jack Sun
Front row: Hans Stork, David Harame

Milestones with key references:

Reduction of coil metal losses

  • J.N. Burghartz, D.C. Edelstein, K.A. Jenkins, C. Jahnes, C.Uzoh, E.J. O'Sullivan, K.K. Chan, M. Soyuer, P. Roper, S. Cordes,
  • "Monolithic spiral inductors fabricated using a VLSI Cu-damascene interconnect technology and low-loss substrates",
    Techn. Dig. IEEE International Electron Devices Meeting (IEDM), 1996, pp. 99-102.
  • J.N. Burghartz, B. Rejaei, H. Schellevis, "Saddle add-on metallization for RF-IC technology",
    IEEE Transactions on Electron Devices, vol. 51, no. 3, 2004, pp. 460-466.


Reduction of substrate losses

  • J.N. Burghartz, "Progress in RF inductors on silicon-understanding substrate losses",
    IEEE International Electron Devices Meeting (IEDM), 1998, pp. 523-526.
  • B. Rong, J.N. Burghartz, L.K. Nanver, B. Rejaei, M. van der Zwan,
    "Surface-passivated high-resistivity silicon substrates for RFICs,
    IEEE Electron Devices Letters, vol. 25, no.4, 2004, pp. 176-178.


Inductor integration processes

  • J.N. Burghartz, M. Soyuer, K.A. Jenkins, M.D. Hulvey,
    "High-Q inductors in standard silicon interconnect technology and its application to an integrated RF power amplifier",
    Techn. Dig. International Electron Devices Meeting (IEDM), 1995, pp. 1015-1018.
  • N.P. Pham, K.T. Ng, M. Bartek, P.M. Sarro, B. Rejaei, J.N. Burghartz,
    "A micromachining post-process module for RF silicon technology",
    Techn. Dig. IEEE International Electron Devices Meeting", 2000, pp. 481-484.


Special inductor structures

  • J.N. Burghartz, K.A. Jenkins, M. Soyuer,
    "Multilevel-spiral inductors using VLSI interconnect technology",
    IEEE Electron Device Letters, vol. 17, no. 9, 1996, pp. 428-430.
  • J.N. Burghartz, A.E. Ruehli, K.A. Jenkins, M. Soyuer, D. Nguyen-Ngoc,
    "Novel substrate contact structure for high-Q silicon-integrated spiral inductors",
    1997, pp. 55-58.


Ferromagnetic core structures

  • Y. Zhuang, M. Vroubel, B. Rejaei, J.N. Burghartz,
    "Ferromagnetic RF inductors and transformers for standard CMOS/BiCMOS",
    Techn. Dig. IEEE International Electron Devices Meeting (IEDM), 2002, pp. 475-478.
  • M. Vroubel, Y. Zhuang, B. Rejaei, J.N. Burghartz,
    "Integrated tunable magnetic RF inductor",
    IEEE Electron Device Letters, vol. 25, no. 12, 2004, pp. 787-789.


Compact inductor design

  • J.N. Burghartz, B. Rejaei,
    "On the design of RF spiral inductors on silicon",
    IEEE Transactions on Electron Devices, vol. 50, no. 3, 2003, pp. 718-729.
  • J.N. Burghartz, D. Edelstein, M. Soyuer, H. Ainspan, K.A. Jenkins,
    "RF circuit design aspects of spiral inductors on silicon",
    Dig. Techn. P. IEEE International Solid-State Circuits Conference (ISSCC), 1998, pp. 246-247.


Themal effects

  • H. Sagkol, B. Rejaei, J.N. Burghartz,
    "Thermal Issues in Micromachined Spiral Inductors for High-Power Applications",
    IEEE Transaction on Electron Devices, vol. 55, no. 11, 2008, pp. 3288-3294.



  • J. Burghartz,
    "RF passives on silicon - the intended and the unintended",
    IEEE Expert Now Course Catalog

Bits&Chips March 2017

„Truth-Resistant Universal Micro Processor“

Bits&Chips July 2016

„Micro-GaN voor macro-power“

Bits&Chips September 2015

„Onderzoeker, wat is jouw v-factor?“

Bits&Chips April 2014


pdficon_large Bits&Chips March 2013

„Ik ben toch niet gek“

Bits&Chips August 2012

„Masterplan DIMES“

Bits&Chips February 2011


Bits&Chips May 2010


Bits&Chips December 2009

„Dr. ind.“

Bits&Chips June 2009


Bits&Chips March 2009

„Plastic valleien“

Bits&Chips December 2008


Bits&Chips June 2008


Bits&Chips February 2008

„Wedergeboorte van de gate array“

Bits&Chips September 2007

„De grote en kleine wereld van beeldsensoren“

Bits&Chips May 2007

„Het recept voor toponderzoek“

Bits&Chips October 2006


Bits&Chips March 2006

„Knopje in het oor“

Bits&Chips January 2005

„Micro-eletronica naar het bejaardenhuis?“

Bits&Chips May 2004

„Wet van Moore recyclen“

Bits&Chips November 2003

„Bipolaire transistor heeft de toekomst“

Bits&Chips May 2002

„Communicatie wordt drijvende kracht chipproductietechnologie“

Mechatronica&Machinebouw May 2014

„Duitse spitzencluster moeten uitvliegen“

Mechatronica Magazine March 2010



Concise, high quality and comparative overview of state-of-the-art electron device development, manufacturing technologies and applications

Guide to State-of-the-Art Electron Devices marks the 60th anniversary of the IRE electron devices committee and the 35th anniversary of the IEEE Electron Devices Society, as such it defines the state-of-the-art of electron devices, as well as future directions across the entire field.

  • Spans full range of electron device types such as photovoltaic devices, semiconductor manufacturing and VLSI technology and circuits, covered by IEEE Electron and Devices Society
  • Contributed by internationally respected members of the electron devices community
  • A timely desk reference with fully-integrated colour and a unique lay-out with sidebars to highlight the key terms
  • Discusses the historical developments and speculates on future trends to give a more rounded picture of the topics covered

IEEE`s "Guide to State-of-the-Art Electron Devices" published by Prof. Dr. Joachim Burghartz was awarded the PROSE Award 2013 on February 6th, 2014 in the Engineering & Technology category.

Guide to State-of-the-Art Electron Devices


Ultra-thin Chip Technology and Applications edited by: Joachim N. Burghartz Ultra-thin chip technology has the potential to provide solutions for overcoming bottlenecks in silicon technology and for leading to new applications. This book shows how very thin and flexible chips can be fabricated and used in many new applications in microelectronics, microsystems, biomedical and other fields. It provides a comprehensive reference to the fabrication technology, post processing, assembly, characterization, modeling and applications of ultra-thin chips.

  • Provides a comprehensive overview of the challenges in ultra-thin chip fabrication, post processing, properties and applications by leaders in the field sharing their newest results and ideas;
  • Compares strengths and weaknesses of three generic fabrication processes for ultra-thin chips;
  • Describes electronic, mechanical, optical, and thermal properties of ultra-thin chips that are different from those of conventional, thick chips;
  • Shows that thin chip technology and its applications represents a new paradigm in silicon technology.

Ultra-thin Chip Technology and Applications

To the top of the page